The Rotating Cylinder Valve 4-stroke Engine A Practical Alternative

Keith Lawes RCV Engines Limited - UK

The Rotating Cylinder Valve 4-Stroke – A Practical Alternative

- ✓ 4-stroke emissions
- 2-stroke performance
- 2-stroke price
- Proven in the field
- Innovative, but NOT radical

Principle of Operation

- Cylinder rotates around piston at cam speed
- Single port in the rotating cylinder indexes with fixed radial inlet and exhaust ports to provide the valving function
- The rotating cylinder is effectively combined with the rotary valve in a single component, hence the name RCV –

Rotating Cylinder Valve

Technical Issues

- Major engine components are conventional.
- Conventional piston/cylinder
- Conventional crank
- Rotating cylinder around piston reduces friction and gives even thermal distribution.
- Oil cooling system.

One major design issue: the 4-Stroke Rotary Valve itself

Four Stroke Rotary Valve Design

- Various attempts have been made to develop rotary valve 4-strokes
- 'Cross' valve design technically successful, but limited cost/performance benefits
- Aspen' valve design not technically successful
- 'RCV' valve design Is technically successful, and offers major cost/performance benefits
- Currently unique legislative incentive to develop low cost 4 stroke technology.

Rotary Valve Seal Design Principles

- A sprung sealing mechanism must be employed 'The Sliding Seal'
- The spring behind the sliding seal must form a static seal with the rear of the sliding seal 'The Seal Spring'
- The seal must be arranged so that the cylinder pressure augments the seal spring pressure 'The Seal Pressurisation Area'
- The seal pressurisation area should be small
- A secondary sprung sealing device must be employed for the inlet and exhaust ports
- All seal components should be kept as light as possible

SETC 2002 Small Engine Technology Conference - Kyoto

Sprung Expanding Ring Seal Design

Seal Frictional Losses Calculation

- Seal torque loss is seal force x coefficient of friction x valve radius.
- Seal force is made up of centrifugal force, seal spring force and seal pressurisation force
- Centrifugal force dependant on RPM and mass of seal components.
- Seal spring force dependant on design of seal spring
- Seal pressurisation force is dependent on the seal pressurisation area and combustion pressure
- Most important factor is seal pressurisation area

		Seal pressurisation area cm2		
		1.0	2.0	5.0
Spring Pressure N	10	2.1%	3.9%	9.9%
	20	2.6%	4.3%	10.3%
	50	3.8%	5.6%	11.6%

Valve Seal Durability & Lubrication

- A rotary valve is a sliding valve: same surface used for bearing and sealing.
- Sealing surface must be lubricated without excessive lubricant loss or emissions.
- Nearest equivalent to RCV valve is a direct injection 2-stroke piston:- a reciprocating sliding valve which achieves low emissions.
- In general piston/cylinder materials/technologies are applicable to RCV valve design (same surface speeds, temperatures and pressures).
- Sprung seal will cope with significant wear before loss in sealing function.
- Seal currently uses conventional materials.

Current Performance

- Corrected max. power 4.1 bhp @ 9500 rpm (ISO 1585)
- 8.7:1 Compression
 - BMEP 8.0
 - Peak torque @ 9500 rpm
 - Engine is reliable, handles well and starts easily
 - Performance achieved without complex setup.

RCV is already matching best production 49cc poppet valve designs

SETC 2002 Small Engine Technology Conference - Kyoto

Predicted Performance

Predicted Corrected Torque v RPM 4.50 4.00 3.50 3.50 3.00 5000 6000 7000 8000 9000 10000

Predicted corrected bhp v RPM 5 4.5 **Corrected bhp** 4 3.5 3 2.5 2 5000 6000 7000 9000 8000 10000 **RPM**

Potential power gains following specific improvements

Raising CR to 11:1	8%
Breathing developments	5%
Valve timing and combustion chamber	5%
Inlet / exhaust tuning	5%

Predicted max power 4.9bhp @ 9500RPM

Reduced variator losses means same rear wheel power as 5.5bhp conventional engine

Production Benefits of RCV Design

Relative Cost %

Component Count

- Lower manufacturing costs. Up to 40% lower than poppet valve or 2TDI
- Use of conventional components means same plant can be used for manufacture
- Low component count

Technical Benefits of RCV Design

- Even thermal distribution
- Large port area
- Reduced frictional losses
- ✓ No complex valve train
- Compact combustion chamber
- ✓ High BMEP

Large port area and high BMEP means the RCV design is capable of achieving high power outputs

Application Benefits of RCV Design

- High fuel economy
- Good durability
- Reduced transmission losses
- Compact
- No complex external plumbing
- Optional low cost balance shaft

Reliability Benefits of RCV Design

- Uses conventional components
- Elimination of reliability weak spots
- Low maintenance
- Low component count

Conclusions

- ✓ The RCV offers significant benefits over conventional designs
- The RCV is particularly suitable for applications where emissions legislation is forcing out the carbureted 2-stroke
- The RCV is a field proven design
- ✓ Most RCV components are conventional.
- Only significant technical issue is the rotary valve. This has been successfully addressed
- The RCV engine is a practical alternative to more conventional designs for small engine applications