RCV Engines Limited - UK

The Development of a Rotating Cylinder Valve 4-stroke Engine for 2-Wheeler Applications

RCV 4-Stroke Engines for 2-Wheelers Presentation Contents

- 2-Wheeler Engine Requirements
- The RCV Engine Concept
- RCV 2-Wheeler Engines
- RCV Handheld Engine Concept
- Future Development Plans

Overview of the Global Market

Global market exceeds 25 million units with major markets for all capacities, as follows:

China40%

India
20%

◆ ASEAN 16%

→ EU 10%

→ USA 5%

- Utility models less than 150cc account for more than 90% production
- 2-stroke engines were popular in utility applications but have been replaced over the last decade by 4strokes with lower exhaust emissions at a cost premium
 - is there an effective 2-stroke replacement?

Future Legislative Events

 Exhaust emissions legislation will continue to drive 2-wheeler engine development

- Future Legislation (CO, HC, NOx)
 - EURO3 new drive cycle with cold start + OBD + durability + anti tampering
 - India 2005 1.5 g/km CO,− 1.25 g/km HC + NOx
- CO2 Legislation
 - Legislation not defined will be monitored from 2006 in Europe - reduction required could be 25%?
 - Fuel consumption is important for utility motorcycle markets – such as India

Utility 2-Wheeler Engine Requirements

	Criteria	Requirement	
	Cost	Lowest manufacturing cost	
	Emissions	Achieve legislation at minimum additional cost	
	Fuel/oil	Deposit control - service intervals	
l o	Noise	Legislative requirements - good sound quality	
SPECIFICATION	Oil consumption	Low consumption with no leaks	
딩	Power	High power with wide torque band	
PE(Production	Repeatable performance in production	
(0)	Reliability requirement	>30,000 km	
	Temperature	-10°C to +40°C with easy starting	
	Weight	Low weight - for economy and handling	
	Abuse	Over-speed and dirt tolerance	
FUNCTION	Environment	Extreme and diverse conditions-water and dust	
	Maintenance	Good serviceability with simple tools	
	Multi product application	Scooter, step-through and motorcycle	
	Package	Compact to suit all existing vehicles	

RCV - Introduction

- RCV Engines is a UK based company established in 1997 to commercially exploit the Rotating Cylinder Valve engine concept invented by Keith Lawes
- RCV commenced production with a model aircraft engine, today RCV manufactures a range of methanol fuelled engines from 10cc to 20cc with more than 6,000 engines operating in over 50 countries worldwide
- RCV are currently developing prototype gasoline and JP8 fuelled engines for unmanned air vehicles (UAV), hand held tool and 2wheeler applications

Rotary Valve Engines - Background

- Sleeve and rotary valve engines have been developed since the 1920's for improved mechanical durability, reduced noise and unrestricted engine breathing
- Sleeve valve engines had advantages of:
 - Reduced losses compared to poppet valves
 - Reduced piston friction
 - Improved detonation resistance
- Rotary valve engines by Cross and Aspin showed advantages of improved volumetric efficiency but with problems of high oil consumption and poor valve durability
- GV Technology (SAE 891793) overcame these issues with a rotary valve conversion of the Yamaha XT500 engine which achieved vehicle fuel consumption reductions of 30% with improved torque.
- Non of these sleeve or rotary valve technologies have demonstrated a production or packaging advantage

RCV - the Concept

- Cylinder rotates around piston at half crankshaft speed
- Single port in the rotating cylinder passes fixed radial inlet and exhaust ports to provide the valve function
- The rotating cylinder is effectively combined with the rotary valve in a single component - hence the name RCV
- The RCV concept is simple with compact package and reduced component count compared to a 2-valve 4 stroke

ENGINE

RCV - Valve Seal Design

- RCV have developed a floating seal concept with minimum blow-by, wear and friction. A floating seal can accommodate production tolerance variations and thermal distortions
- The seal incorporates:
 - 1) Solid compression seal dynamic seal using wave spring and cylinder pressure
 - 2) Piston ring type seal forms seal at rear of compression seal
 - 3) Wave spring provides static sealing force
- Compression seal based on similar material to piston rings – similar operating environment

RCV 49cc Prototype Engine Valve Seal

RCV 49cc Prototype Engine Valve Flow Performance

Pressure drop v crank angle
All flows measured with an input pressure of 72mm H2O

- Large unrestricted port area (290mm²)
- 50% higher flow areacompared to a typical 4stroke 2 valve engine
- High flow capacity
 enables valve overlap to
 be minimised without
 sacrificing power
 - Typically torque levels are 85% of max between 3000 and 9000 rpm
- Still larger areas are possible, up to 400mm²

RCV Crankshaft Output Engine Cost/Component Count

RCV Estimates – based on a bill of materials comparison of a 125cc 4 stroke 2 valve air cooled scooter engine converted to a crankshaft output RCV engine

RCV - Technical Advantages

- Reduced friction and fuel consumption
 - Rotating cylinder provides continuous piston lubrication
 - Elimination of valve train net advantage considering seal losses – efficiency benefits particularly at part load
- Improved volumetric efficiency
 - Unrestricted port with large effective valve area
- Efficient 4 Stroke combustion system
 - Exhaust emission legislation compliance with conventional
 4 stroke motorcycle after-treatment technology
- Improved Assembly and Maintenance
 - Cylinder height similar to a 2-stroke engine
 - Low component count; simple assembly
 - No cam chain or valve lash clearance to adjust
 - No valve bounce at over-speed operation

RCV 2 – Wheeler Engines

- RCV have been developing prototype engines for 2-wheelers since 1999
- RCV initially developed a cylinder output
 49cc engine for scooter applications
- RCV have overcome several development issues and tested both cylinder output and crankshaft output versions of the 49cc engine

RCV – Prototype Motorcycle Engines 49cc Prototypes

- Series 1 cylinder output proof of concept
- Series 2 cylinder output vehicle application
- Series 2A crankshaft output
 - 4.3 bhp achieved
 - Excellent valve durability

RCV - Motorcycle Engines Crankshaft Output Concepts

- Cylinder output versions offer the greatest potential for cost savings – but requires the development of a completely new engine with greater risk for manufacturers
- RCV are focusing on crankshaft output versions for 2-wheelers
 - Retains existing crank-train and transmission
 - Packaging compatible with existing vehicles
 - Cylinder height reduction 40mm for 125cc

RCV - Development Issues

ISSUE	SOLUTION
Blow by	Floating valve seal + repositioned spark plug
Fuel/oil deposits	Direct cylinder oil cooling
Oil consumption	Revised cylinder/crankcase oil distribution
Seal wear	Use of piston ring technology for seal materials
Unstable idle	Revised seal design

RCV 49cc Crankshaft Output Engine Performance

RPM

TEST VENUE - RICARDO

Engine performance verified at Ricardo Consulting Engineers

PERFORMANCE

- Max torque 3.7Nm @ 7000 rpm
- Max power4.2bhp @ 8500
- Min BSFC 290 g/kWh

EMISSIONS AT 3%CO

- \blacksquare HC = 13 g/kWh
- $\sqrt{NOx} = 12 \text{ g/kWh}$

Air-cooled motorcycle engines compared to 2 valve SOHC 4-stroke

	2 Stroke	2 Stroke DI	RCV 4 Stroke
Cost	✓✓	XX	✓
Engine size	√√	O	√ √
Emissions	XX	✓	O
Fuel economy	XX	√ √	√√
Noise	X	X	✓
Power	✓✓	√√	✓
Servicing	✓✓	XX	✓
Weight	11	√	√

RCV Technology - Status of Development

RCV Motorcycle Engine Status

	Criteria	RCV Status	
SPECIFICATION	Cost	Less components compared to standard 4-strokes	
	Emissions	Initial results indicate similar levels to standard 4-stroke - conventional after treatment technology applies	
	Fuel/oil	Not an issue on development engines - requires confirmation on vehicle prototype	
	Noise	Not an issue with crankshaft output design	
ICA]	Oil consumption	Acceptable oil consumption measured	
능	Power	Acceptable performance with development potential	
J.K	Production	Component value engineering outstanding	
	Reliability requirement	Durability to be confirmed on vehicle prototypes	
	Temperature	Cold starting performance to be confirmed	
	Weight	Competitive weight - aluminium cylinder being investigated	
	Abuse	Overspeed not an issue	
Z	Environment	To be confirmed by testing	
FUNCTION	Maintenance	Easy engine to build and disassemble - no valves to adjust	
	Multi product application	Possible with crankshaft output concept	
	Package	Similar cylinder height to a 2 stroke	

RCV Handheld Engine Concept

- 4 Stroke cycle EPA Phase 2 emissions potential
- Fuel/mix lubricated allows multiposition operation
- Crankcase supercharged high power to weight ratio
- RCV valve high engine speed potential
- Compact packaging fits in 2 stroke package
- Low maintenance and easy to service

RCV Handheld Engine Features

ROTATING HEAT SINK

INSULATED EXHAUST PORT

RCV DYNAMIC VALVE SEAL

FUEL/OIL TRANSFER DUCTS IN CYLINDER

COMPACT ENGINE HEIGHT – SIMILAR TO 2-STROKE

CENTRAL ROTATING SPARK PLUG

INTAKE PORT

INTAKE REED VALVE (NOT SHOWN) ALLOWS STD. CARBURETTOR LOCATION

REED VALVE TO TRANSFER DUCT

RCV Handheld Engine Concept

 RCV handheld engine concept packages into an existing chainsaw layout with carburettor and exhaust positions unchanged

RCV - Development Plans 2004

- RCV 2-Wheeler Engines
 - Proof of concept phase completed
 - 125cc motorcycle demonstrator to be built to establish technical and commercial advantages
- RCV Handheld Engines
 - Proof of concept engine prototype to be built
 - Poppet valve 4-stroke technology is unsuitable for chainsaw applications where 2-strokes have emissions issues and catalysts create a fire hazard

Summary

RCV have developed a new 4-stroke engine concept with benefits over current 2-stroke and 4-stroke engine designs

- Application possibilities include: 2-wheeler, forest & garden, industrial, generators, marine, & aero products
- RCV have ongoing development plans aimed at reducing the technology risk for commercial production applications
- The advantages of RCV technology are:

✓ Low cost

✓ Low maintenance

✓ Fuel efficient

✓ Protected by international patents

✓ High Power

✓ Compact package

Conclusion

RCV 4-stroke technology has the potential to become an effective 2-stroke replacement with improved fuel efficiency compared to traditional poppet valve 4-strokes